
A brief summary about quaternion use for
describing rotations in 3D space

J. Rabault

30th June 2017

1 Introduction
Quaternions are an appealing tool for describing rotations in 3D as they do not suffer from
gimbal lock, that impairs methods based on Euler angle. From a purely ’utilitarian’ point of
view with the aim of describing rotations in 3D, one just needs to know a few formula about
quaternions to apply them.

2 Quaternion formula for description of 3D rotations
• Quaternion definition: a quaternion is a collection of 4 real numbers. In all the

following, we will use the notation: q = [q0, q1, q2, q3].

• Quaternion norm: a unit quaternion is a quaternion of norm 1, where l the norm of a
quaternion is computed as: l =

√
q2

0 + q2
1 + q2

2 + q2
3

• Quaternion scaling: with a a real number, a· q = [aq0, aq1, aq2, aq3]

• Sum of two quaternions: p+ q = [p0 + q0, p1 + q1, p2 + q2, p3 + q3].

• Quaternion conjugation: q∗ = [q0,−q1,−q2,−q3]

• Quaternion inverse: q−1 = [q0,−q1,−q2,−q3]
q2

0+q2
1+q2

2+q2
3

= q∗/l2. If q is a unit quaternion, q−1 = q∗.

• Product of two quaternions: note that this is not commutative, i.e. in general
p⊗ q 6= q ⊗ p:

r = p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1
p0q3 + p1q2 − p2q1 + p3q0


where, of course, the first line of the result is r0, the second one r1, etc...

• Conjugate of product: (p⊗ q)∗ = q∗ ⊗ p∗.

1



Formula - quaternions

• Description of a rotation in 3D as a quaternion: all rotations in 3D can be described
as unit quaternions, and vice-versa. If R is the rotation in 3D around axis described by
the vector ω = (ωx, ωy, ωz) with lω =

√
ω2

x + ω2
y + ω2

z its norm, and of angle θ, then it is
described by the unit quaternion:

qR =
[
cos(θ2), ωx

lω
sin(θ2), ωy

lω
sin(θ2), ωz

lω
sin(θ2)

]

When using this formula, be careful not to divide by zero (lomega must be different from
zero); if the rotation you describe is the identity, the associated quaternion is [1, 0, 0, 0].
This formula is also very easy to inverse: you can obtain θ from the first term, and once θ
is known computing ω is easy. Note that you can describe a rotation other than identity
in two ways as R(θ, ω) = R(−θ,−ω).
Note also that the formula for quaternion inverse and conjugation make sense: R−1(θ, ω) =
R(θ,−ω), which corresponds in the case of unit quaternion describing rotations to q−1 = q∗.

• Expression of a vector as a quaternion: if v = (vx, vy, vz) is a vector in 3D, you can
write it as a quaternion: qv = [0, vx, vy, vz] = [0, ~v].

• Relation between vector quaternions, scalar product and cross product:

[0, ~u]⊗ [0, ~v] = (−~u·~v, ~u× ~v)

• Applying a unit quaternion (rotation) on a vector: if qR is a unit quaternion,
describing the 3D rotation R, and v a vector, then:

[0, R(v)] = q ⊗ [0, ~v]⊗ q∗

• Relation between quaternion product and matrix composition: unit quaternion
product is the equivalent of rotation composition: if R1 is described by qR1 and R2 by qR2 ,
R2 ◦R1 is described by qR2 ⊗ qR1 .

3 A few complementary notes
There are many modules in all programming languages that give access to quaternion objects
and computations. For a very simple implementation in Python, together with an example
application, see https://github.com/jerabaul29/IntegrateGyroData.

Quaternions are very convenient to use but not really efficient for calculating the result of a
rotation applied on a vector / point in 3D, i.e. more calculations (about doubles compared
with the Rodrigues rotation formula) are performed than necessary if the formula written in
the present section are applied directly. If you need fast implementation, consider using the
Rodrigues or similar formula instead of the application of a unit quaternion on a vector: https:
//gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion.

J. Rabault
2


